引用本文:冯帆,姜永海,廉新颖,等.地下水回补引发含水层氟释放次生风险的模拟研究[J].环境科学研究,2020,33(6):1440-1450.
FENG Fan,JIANG Yonghai,LIAN Xinying,et al.Simulation Study on Secondary Risk of Aquifer Fluoride Release Induced by Groundwater Recharge[J].Research of Environmental Sciences,2020,33(6):1440-1450.]
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 150次   下载 121 本文二维码信息
码上扫一扫!
分享到: 微信 更多
地下水回补引发含水层氟释放次生风险的模拟研究
冯帆1,2, 姜永海1,2, 廉新颖1,2, 杨昱1,2, 郇环1,2, 万朔阳2,3, 贾永锋1,2
1. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012;2. 中国环境科学研究院, 国家环境保护地下水污染模拟与控制重点实验室, 北京 100012;3. 成都理工大学环境与土木工程学院, 四川 成都 610059
摘要:
地下水回补过程中,含水层沉积物中部分微量组分(As、F等)可能因为环境条件改变释放进入地下水中造成次生污染.为探究回补入渗后含水层F-释放的次生风险,依托潮白河南水北调回补区及我国北方8个具有高F地下水的典型区域,应用PHREEQC软件模拟回补入渗对含水层萤石矿物溶解平衡及地下水F-浓度的影响.研究含水层沉积物典型矿物组分、回补水源与地下水水质差异对F-释放次生风险的控制作用.结果表明:①由于回补水源水质、地下水水质及含水层矿物差异,回补后不同地区地下水中F-浓度的呈现趋势有显著差异,部分地区由于地下水水质差异大,F-浓度存在上升及下降两种趋势.②地下水Ca2+浓度相对较低的区域回补后F-浓度呈下降趋势,增大回补量有利于降低F-释放风险,而对于Ca2+浓度高、甚至萤石饱和的区域,增大回补量会增加F-释放风险.③地下水中F-浓度同时受到萤石及其他含钙矿物的控制,当含水层存在萤石矿物且其他含钙矿物较少时,回补后F-释放的风险增大.因此在具有F背景的区域,对地下水Ca2+浓度较高的含水层或除萤石外含钙矿物含量有限的含水层进行回补时,可能导致地下水F-浓度升高引发回补次生风险.对于回补水源、地下水与含水层矿物组分相互作用的深入研究是保证地下水安全回补的关键,回补后F-释放反应动力学的进一步研究将加深F-释放次生环境风险的认识.
关键词:  地下水回补  氟(F)  次生风险  PHREEQC软件模拟
DOI:10.13198/j.issn.1001-6929.2020.04.10
分类号:
基金项目:国家水体污染控制与治理重大专项(No.2018ZX07109-004);国家自然科学基金青年项目(No.41907178)
Simulation Study on Secondary Risk of Aquifer Fluoride Release Induced by Groundwater Recharge
FENG Fan1,2, JIANG Yonghai1,2, LIAN Xinying1,2, YANG Yu1,2, HUAN Huan1,2, WAN Shuoyang2,3, JIA Yongfeng1,2
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;2. State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;3. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
Abstract:
During managed aquifer recharge (MAR), trace components (As, F, etc.) in aquifer sediments may be released into groundwater due to the change of environmental conditions, resulting in secondary groundwater pollution. The MAR site of the Chaobai River and eight typical areas with high fluoride groundwater in northern China were selected to explore the secondary risk of fluoride release after MAR. The PHREEQC was applied to simulate the influence of MAR water infiltration on the balance of fluorite dissolution and F- concentration in groundwater, and to figure out how the quality of MAR water and groundwater, mineral composition of aquifer sediment control the secondary risk of F- release in aquifer. The simulation results show that: (1) Due to the difference of MAR water quality, groundwater quality and aquifer minerals in different areas, the F- concentration in the groundwater after MAR shows different trends, even both rising and falling trends can be found in one region with distinguished groundwater quality; (2) The F- concentration in the area with relatively low Ca2+ concentration of groundwater shows a declining trend after MAR, and increasing the MAR is conducive to reduce the risk of F- release, while for the area with groundwater of high Ca2+ concentration or even fluorite saturation, enhanced MAR increases the risk of F- release; (3) Groundwater F- is controlled both by fluorite and other calcium minerals. When fluorite and less content of other calcium minerals occurs in aquifer, the risk of F- release may occur. The MAR site with high Ca2+ concentration in groundwater or with less calcium minerals in the aquifer, the secondary risk of MAR occurs in the form of F- enrichment. This research shows that the in-depth investigation on the interaction among the MAR water, groundwater, and aquifer minerals is the key to ensure the safety of MAR. Further study on the kinetics of F- release reaction after MAR will deepen the understanding of the secondary environmental risk of F- release.
Key words:  managed aquifer recharge  fluoride (F)  secondary risk  PHREEQC software simulation